MULTIPLE VISUAL AREAS

- 1: Definition of an 'area' of visual cortex
- 2: Discovery of areas in monkey visual cortex; functional specialisation
- 3: Use of imaging to chart areas in human visual cortex
- 4: Why are there multiple areas? A 'theory' of vision.

Criteria for area definition : V5/MT (alternative terminology for homologous areas across species)						
- V5 is an isolated projection field of V1 (Zeki 1969); (neighbouring cortex within STS does not receive input from V1).					Connectivity	
 V5 has a very high proportion of direction-selective cells (Zeki 1974); V4 has little direction tuning; V5A also has many direction-selective cells, but they have larger receptive fields than V5 cells. 						
 area MT has a distinct myeloarchitecture (Allman & Kaas 1971); as determined in the owl monkey (Aotus) MT = 'middle temporal' 					Architecture	
 area MT has a unitary visual hemifield map (Allman & Kaas 1971) as determined in the owl monkey (Aotus) 					Map of sensorium	
	colour	motion	form			
V5		+				
V4	+		+			
V3/A		+	+			
V2	+	+	+			
				(Lunate Suicus) LS	S (Superior Temporal Sulcus)	
23						

- (C) on totally flattened 2D surface (NB this requires 'tearing' part of the surface to minimise distortion).

- Multiple areas enable more efficient visual computation;
- Different computational goals are implemented most efficiently by separate, specialised subsets of neural circuitry.